Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 323: 121187, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736563

RESUMO

Mercury (Hg) is a highly toxic metal that adversely impacts human and wildlife health. The amount of Hg released globally in the environment has increased steadily since the Industrial Revolution, resulting in growing contamination in biota. Seabirds have been extensively studied to monitor Hg contamination in the world's oceans. Multidecadal increases in seabird Hg contamination have been documented in polar, temperate and subtropical regions, whereas in tropical regions they are largely unknown. Since seabirds accumulate Hg mainly from their diet, their trophic ecology is fundamental in understanding their Hg exposure over time. Here, we used the sooty tern (Onychoprion fuscatus), the most abundant tropical seabird, as bioindicator of temporal variations in Hg transfer to marine predators in tropical ecosystems, in response to trophic changes and other potential drivers. Body feathers were sampled from 220 sooty terns, from museum specimens (n = 134) and free-living birds (n = 86) from Ascension Island, in the South Atlantic Ocean, over 145 years (1876-2021). Chemical analyses included (i) total- and methyl-Hg, and (ii) carbon (δ1³C) and nitrogen (δ15N) stable isotopes, as proxies of foraging habitat and trophic position, respectively, to investigate the relationship between trophic ecology and Hg contamination over time. Despite current regulations on its global emissions, mean Hg concentrations were 58.9% higher in the 2020s (2.0 µg g-1, n = 34) than in the 1920s (1.2 µg g-1, n = 107). Feather Hg concentrations were negatively and positively associated with δ1³C and δ15N values, respectively. The sharp decline of 2.9 ‰ in δ1³C values over time indicates ecosystem-wide changes (shifting primary productivity) in the tropical South Atlantic Ocean and can help explain the observed increase in terns' feather Hg concentrations. Overall, this study provides invaluable information on how ecosystem-wide changes can increase Hg contamination of tropical marine predators and reinforces the need for long-term regulations of harmful contaminants at the global scale.


Assuntos
Charadriiformes , Mercúrio , Animais , Humanos , Ecossistema , Mercúrio/análise , Monitoramento Ambiental/métodos , Aves , Oceano Atlântico
2.
Glob Chang Biol ; 25(4): 1383-1394, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30712272

RESUMO

In the face of accelerating ecological change to the world's oceans, seabirds are some of the best bio-indicators of marine ecosystem function. However, unravelling ecological changes that pre-date modern monitoring programmes remains challenging. Using stable isotope analysis of feathers and regurgitants collected from sooty terns (Onychoprion fuscatus) nesting at a major Atlantic colony, we reconstructed a long-term dietary time series from 1890 to the present day and show that a significant dietary shift occurred during the second half of the twentieth century coinciding with an apparent population collapse of approximately 84%. After correcting for the "Suess Effect," δ13 C in feathers declined by ~1.5‰ and δ15 N by ~2‰ between the 1890s and the present day, indicating that birds changed their diets markedly over the period of population decline. Isotopic niches were equally wide before and after the population collapse but isotopic mixing models suggest that birds have grown ever more reliant on nutrient-poor squid and invertebrates as teleost fish have declined in availability. Given that sooty terns rely heavily on associations with sub-surface predators such as tuna to catch fish prey, the rapid expansion of industrialized fisheries for these species over the same period seems a plausible mechanism. Our results suggest that changes to marine ecosystems over the past 60 years have had a dramatic impact on the ecology of the most abundant seabird of tropical oceans, and highlight the potentially pervasive consequences of large predatory fish depletion on marine ecosystem function.

3.
PLoS One ; 9(4): e93582, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714514

RESUMO

Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17,000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts.


Assuntos
Cruzamento , Charadriiformes/fisiologia , Migração Animal , Animais , Estações do Ano , Clima Tropical
4.
J Wildl Dis ; 49(2): 455-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23568928

RESUMO

A sublingual fistula is an opening through the ventral skin of the buccal cavity through which the tongue can protrude. The cause is unknown. Masked Boobies (Sula dactylatra) are the third avian species to be reported with this condition. We argue that ectoparasite infestation of hatchlings may be an initial cause.


Assuntos
Doenças das Aves/etiologia , Ectoparasitoses/veterinária , Fístula/veterinária , Soalho Bucal/patologia , Animais , Doenças das Aves/parasitologia , Aves , Ectoparasitoses/complicações , Fístula/etiologia , Fístula/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...